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Abstract—For a laminated plate in which each layer is made of a transversely isotropic material,
the exact three-dimensional elasticity theory is shown to be greatly simplified with the use of the
assumption that the elastic modulus in the preferred direction is large compared with the shear
moduli. The resulting asymptotic theory is shown to be best where the classical plate theories fail
most : it gives very accurate results for a single-layer thick plate or a thick plate made of only a few
layers.

1. INTRODUCTION

It has been well recognized that the classical plate theories are inadequate for the analysis
of laminated plates because of their negligence of transverse shear strains. Thus various
finite element methods and theories based upon modifying the basic assumptions of the
classical plate theories have been proposed in the literature [see Owen and Li (1987), Reddy
(1984) and the references therein]. These theories are usually equally suitable for any kind
of orthotropic materials. However, many fibre-reinforced composites exhibit the property
that the elastic modulus in the fibre direction is large compared with the shear moduli. This
property could possibly be exploited to find asymptotic solutions to a variety of stress
analysis problems. We start our exploration of this possibility in this paper by first settling
the question “how effective could the asymptotic method be in stress analysis of fibre-
reinforced composites?” through the consideration of a relatively simple problem. Once
this question has been answered, we can then apply the asymptotic method with confidence
to more complex problems where exact solutions are not possible.

Asymptotic methods have been widely used in various branches of science in the past
40 years or so and it is well known that they can give very good results even if the underlying
large parameters are only moderately large. In the context of stress analysis, asymptotic
methods based upon the largeness of the elastic modulus in the fibre direction have been
used before in various plane-strain and plane-stress problems and comparisons have been
made with known exact solutions where they exist [see e.g. Spencer (1974)]. Pipkin (1979)
has written a good review article on this subject. However, as far as we are aware, very few
authors have carried out asymptotic stress analysis for three-dimensional problems. Thus
examples are still in short supply as to how effective the asymptotic method could be in
stress analysis of fibre-reinforced composites and what their limitations are, especially for
three-dimensional problems where more length scales are involved. The particular three-
dimensional problem considered in this paper has a new feature which is not encountered
in plane problems: it involves a small length scale if the thickness of the composing layers
are small, which poses a severe test to the asymptotic method. This problem also has an
exact solution which enables us to make a critical assessment on the effectiveness of the
asymptotic method.

We consider the three-dimensional problem of a laminated plate which is simply
supported and which is subject to arbitrary loading on its top and bottom surfaces. We
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assume that each layer is made of a transversely isotropic material and the fibres are cither
aligned with the x-axis or with the y-axis. The exact solution to this problem with each
layer made of a general orthotropic material has been given by Pagano (1970), but later
we shall show that his formulae are actually not valid for transversely isotropic materials.
We will first derive the correct exact solutions and then compare the asymptotic solutions
with them by considering two specific examples.

This paper is divided into seven sections as follows. In the next section, we first consider
a single layer and derive the asymptotic solutions for the stress and displacement fields and
then we show how to construct the global solutions. In Section 3 we give the modified form
of Pagano’s (1970) exact solution appropriate to transversely isotropic materials, which is
followed in Section 4 by an improved formulation based on the propagator matrix method
(Gilbert and Backus, 1966). In Section S, we consider two specific examples and compare
our asymptotic results with the exact solutions. The dependence of our asymptotic results
on the values of elastic moduli and the layer thickness is further discussed in Section 6. In
the final section, we draw some conclusions.

2. THE THREE-DIMENSIONAL ASYMPTOTIC SOLUTION FOR A SINGLE LAYER

Consider a laminated rectangular plate (0 < x € 4,0 < y < 5,0 < z < h) composed of
N transversely isotropic layers such that the preferred direction (i.e. the fibre direction} of
each layer is either along the x-axis or along the y-axis. We assume that the four sides are
simply supported and are traction-free. The boundary conditions on the top and bottom
surfaces are assumed to be arbitrary at the moment and will be specified when we consider
specific problems. In order to determine the displacement and stress fields in this plate, we
first focus our attention on a single layer which has its preferred direction along the x-axis.
For such a layer, the constitutive equations are given by [see Spencer (1984)]

o, B Ato Ata }le,.
0,0 ={A+a A+2u A el @

¥

g, /1 + o A )b + 2”; €;;
Ty, = Zﬂteyza Tz = lelexy’ Txy = 2ﬂlexy‘ 2

Here yu, and y, are shear moduli for shear on planes parallel to the fibres, with direction of
shear in the fibre direction (&) and normal to the fibre direction (u,) respectively. The
extension moduli E, for uniaxial tension in the fibre direction and E, for uniaxial tension in
directions normal to the fibres and the Poisson’s ratio v, are related to 4, « and § by
(Spencer, 1974) :

(A+9)° _ AplBGA+p) — (A+9)’] Ata

itn . BT TG amB—Gre T 2 3

E =$-

Here v, measures strain in the t-direction under uniaxial normal stress in the fibre direction ;
whilst the other Poisson’s ratio v, can be calculated from v, = E,/(2u,) — 1 due to transverse
1sotropy.

In this paper, we formulate our problem in terms of the displacement (x4, v, w). On
substituting the strain-displacement relations into (1) and (2) and then the resulting
expressions into the equations of equilibrium, we obtain

ﬁu‘xx + Hy (u,yy + u,zz) + (2"*' o+ sul)”.xy + (;L+ a+ﬁ1)w,xz = 03 (4)

U xx + (A + 2#t)v,yy + B 22 + ()‘ +a-+ I‘ll)u.xy + (l + ﬂl)w,yz = 09 (5)
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K w,xx + urw,yy + (A + 2ﬂl)w,zz + (A +a+ #I)u,xz + (A' + ”t)v,yz = 0 (6)
Here a comma denotes partial differentiation.
Following Pagano (1970), we look for the following “normal mode solutions” to the
above equations :
u = U(z) cos px sin gy,
v = V(2)sin px cos gy,
w = W(z)sin px sin qy, N

where

p=", q=%, (n,m=1,2,..). 8)

Once the above forms of the solutions have been found, a double Fourier expansion will
then be able to satisfy any boundary or interface conditions. We note that the expressions
(7) have already satisfied the simple support edge conditions.

In order to find the differential equations satisfied by U, V and W, we substitute (7)
into (4)—(6) and obtain

—p*BU+ (U —q*U)—(A+a+pu)pqV+(A+a+pw)pW =0, )]
—wpV—GA+2u)g*V+u V' —A+a+p)pqgU+ A+ p)gW’ =0, (10)
—up*W—pg* W+ (G4 2u) W'~ (A+a+u)pU’ — (A+p)gV’ = 0. an

Here a prime denotes differentiation with respect to z. This set of equations has been solved
exactly by Pagano (1970). Here we shall solve them using the asymptotic method, aiming
to simplify the analysis and also to assess the accuracy of the asymptotic method.

The first task in an asymptotic analysis is to non-dimensionalize the governing equa-
tions using appropriate scales and to identify the sizes of all dimensionless parameters. Here
we use y, to scale the elastic constants and use the layer thickness, £ say, to scale the variable
z. Then the non-dimensional version of the governing equations (9)—(11), which will not
be written out here, would involve the following three parameters whose sizes need to be
fixed :

2.1 12)

For many advanced composites like graphite-epoxy, ¢ is of the order 0.02. In the following
mathematical development, ¢ is assumed to be infinitesimally small (in view of the relation
(3a), this is equivalent to assuming that the Young’s modulus E;is large compared with the
shear modulus y;), whilst the other two parameters s and r are assumed to be of order one
relative to &. The effect of the latter assumption on the accuracy of the asymptotic results
will be discussed in the final section.

Based on these assumptions, we look for the following form of asymptotic solutions
for (9)-(11):

U=U0+8U1+"', V=V0+8V1+"‘, W= W0+8W1+"'. (13)

Although in theory the above asymptotic expressions can approximate the exact solution
to any desired order of degree if enough higher order terms are retained, we shall mainly
be concerned with the leading order solutions in the present paper.
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On substituting (13) into (9)-(11), replacing 8 in (9) by /e and then equating the
coefficients of like powers of ¢, we obtain a hierarchy of differential equations for U,, U,,
etc. To leading order, (9)-(11) in turn give

Uy =0, (14)
wp Vot A+2u)g* Vo~ uVi—(A+p)gWy = 0, (15
— (WP + g IWo+ A+ 2u)Wo—(A+p)gVy = 0. (16)

By differentiating (16) and using (15) to eliminate W,, we obtain

teA+2u) VS — {(A+3p)pmp* + QAu, +4u) g} Vo
+(up® +pg e + A+ 2p)g°1Vy = 0. (17)

We note that the order of this equation is four whilst the order of the equation satisfied by

the exact solution for V should be six [see Pagano (1970)]. Thus in the limit ¢ — 0, the

highest derivative term has been dropped. This is certainly typical of asymptotic analysis.

Because of the reduction of the order of the governing equation, we cannot expect the

corresponding leading order solution to satisfy all of the boundary and interface conditions.

The latter conditions can be satisfied by the boundary layer solutions to be introduced later.
It is easy to show that the general solution of (17) is given by

Vo(z) = C1 e+ Cye ™"+ Cy e 4 Cye™°%, (18)

where Cy, C,, C; and C, are disposable constants and o, , have the explicit expressions

= M, z\[ﬁ‘i 2, 2 19
o ,/#lp +q°, 0, i+l +q°. (19)

These explicit expressions, obtained under the small ¢ limit, are significant simplifications
over Pagano’s exact expressions (later we will see that (19a) is in fact exact).
The expression for W, is obtained by integrating (15) and is given by

(+)gWa(z) = (ﬂf@’«ff-} —u,)crl(c, e —Cer)
1
¥ (9‘(“5%22 ”"r)ﬂz(c‘s e —Cyer), (20)

where the arbitrary integration constant has been set to zero in order to satisfy (16) [note
that (17) has been obtained by differentiating (16)] and the function w(p, ¢) is defined by

o(p,q) = wp*+(GA+2u)q". 2D

Since U, = 0, the function U is in fact of order ¢ and U, then becomes important [see (13a)].
To determine U, we equate the coefficients of ¢° in (9) and obtain

_Atat

U,
wp

(Wo—qVo).

If we introduce five more functions through



An asymptotic stress analysis of laminated plates 3249

fu
o{(p,q) =0, = ;1 2+q2, wy(p,q) = ~04,
t
U
3(p,q) =65 = /i+12,u PP+4, wup.q) = —0o,
t

i w(p, .
F(maaVZ) = )»+}l [ (:zq) ‘“H,]U e”, (22)

then the leading order solution obtained above can be neatly written as

A+a+,u,

Uiy =¢"
(@ p

4
Z (0 F(w, w;, 2)—q° €)C;,
i=1
4
V(z) = 3, Cie*,
i=1
1.4
W(z) = p Y C:F(w,w;,2). (23)
i=1

These expressions have the nice property that each differentiation only produces a factor
w; under the summation sign.

2.1. Boundary layer solutions

The leading order solution (23) contains only four disposable constants and so it
cannot in general satisfy the six boundary or interface conditions. This is due to the
negligence of the term y,U” in (9) in our leading order approximation. This term can be
neglected if 8/0z is not large. Thus the solution (23) is only valid in the inner region (away
from the two surfaces of the layer under consideration) where the z-variation is of order
&°. However, near the two surfaces of the layer, U(z) has to vary rapidly so as to adjust to
the conditions at the surfaces. From (9) we see that the thicknesses of these “boundary
layers” are determined from the condition that

o 1

12

Thus the boundary layer thickness is of order ¢"/“ and so we introduce two boundary layer

variables

z—h z—h
f|=“~£]/—zl and ¢2=81*/22, (24)

which are appropriate to the lower surface (z = h,) and upper surface (z = h,), respectively.
For the boundary layer near the lower surface, we look for solutions of the form

U=2e"0,(¢)+eU €D+,
V="V&)+e 2V (E)+ -,
W=Wy(&)+e )+ (25)
Here we have anticipated U to be of order ¢'/2, since we expect ¢,,(=0(U")) to be O(1).
On transforming the independent variable z to £, in (9)-(11) with the use of (24a),

substituting (25) into the resulting equations and then equating the coefficients of like
powers of g, we obtain
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() = V(&) = Wi&) = Wi(£) =0 (26)
and
JT5(E)—pU,(E) = 0, 27)
iy o pltatp) .
1ED—p U (&) =—[I-~[9Vo(£l)—W1(r§:)]~ (28)

By solving (26) subject to the condition that the boundary layer solution (25) should
match with the inner solution (23), we find that

770 = Vy(hy), ;?1(51) = io(hl)fz,
Wo(f!) = Wy(hy), Wl(ejl) = Woh)¢,.

Inserting these expressions back into (25b,c) then shows that the boundary layer solution
for ¥ and W is simply the inner solution expanded in the neighbourhood of the lower
surface. Thus the boundary layer has a passive role with regard to the determination of V
and W. As for U, solving (27) gives Uy(£,) = Cse "1 +C, e”1. As we move away from
the lower surface into the inner region (i.e. as &, —» o), Uy(&,) should tend to zero in order
to match with the inner solution (23a). Thus C; = 0 and

l?o(fl) =Cse™", 29
With similar considerations, we solve (28) to obtain

Ata +[£1

0:€) = ——Wh))—qVo(h)], (30

where the term proportional to e #°1 has been set to zero since otherwise it can be absorbed
into U, by redefining the constant Cs.

In a similar fashion, we can show that in the neighborhood of the upper surface, the
boundary layer solution for and W is simply the inner solution expanded about z = h,
and U expands like U = ¢"20,(¢,) +&U,(¢,) +- - - with Uy and U, given by

l‘z

Uo(&)) = Cse™, Uy(&) = L0 [Wiy(hy) — g Vo). 31)

Thus by considering the boundary layer solutions, we have brought the total number of
disposable constants up to six, which is the right number for satisfying all the possible
boundary and interface conditions.

Once we have obtained the inner and boundary layer solutions, the composite solution
(valid throughout the ply) can be constructed in the usual manner (Nayfeh, 1973) and 1s
given by, with higher order terms neglected,

U = eV3(C, e 714 Co %) 462 T TH S (4, F(0, 01,2 — 47 €9)C,
mpqd i
4
V=Y C e,
i=1
1 4
m— Z C.F(w,w;,z). {32)
i=1

We note that in the inner region, e 7' and e”*2 are both exponentially small and (32)
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reduces to the inner solution (23); whilst in the upper (lower) layer, e P (e”?) is expo-
nentially small and (32) reduces to the boundary layer solution in the upper (lower) layer.
Thus (32) is indeed valid throughout the ply.

2.2. Stress field
With the use of (32) and (1), the stress components in the single layer under con-
sideration are found to leading order to be given by

4
0, = {—up(Cs e 714+ Cq eP*2)g™ 112 — % Y [wF(w,,,2)— ¢ €7]C;} sin px sin gy,

j=

(33
4 'lwi (54 M M
0= ¥ 17g F@ 12— @+ 2u)qe™ (Cisin pxsin gy, Sa)
ie=1
4
. =Y {X +:‘" * w; F(w, ©;,2)— g e"’"}Cs sin px sin gy, (3%)
j=1
4
T, = i, 3. {F(w,w;,z)+w; e} C,; sin px cos qy, 36)
i=1
l 4
Tz = s“lp{ - Cs e—ﬁfg + Cﬁ ep£2+ a _Zl C;F(ﬂ}, (D,‘,Z)}COSPX Sin qy’ (37)
3
T, = ﬂ,p( ev? Cz) COS pX €OS gy. (38)
[E

On substituting (32) into (7), we obtain the displacement field
° o= 8”2 {(Cs e“"’f‘ +Cs e"“)

2 4 :
+s‘f2-—“;—‘%’-‘f Y (@0.F(0,w,2) g emrf)c,}cos pxsingy, (39)
{3 i= 1

4
v= ( C; e‘”f‘) sin px cos gy,
1

i=

4
W= é( Y CF(o, m;,z)) sin px sin gy. 40)

i=1

The above solutions are for a single layer which has its preferred direction along the
x-axis. For a layer which has its preferred direction aligned with the y-axis, the displacement
and stress fields can be obtained from (33)-(40) by replacing (p,q) by (g, p), (x,») by
{», x), (u,v) by (v, %) and leaving others unchanged.

For a single-layer plate, the six constants C; (i = 1,2,...,6) are determined by the six
boundary conditions on the top and bottom surfaces. For a plate made of N (say) layers,
the six boundary conditions are augmented by 6(N—1) interface continuity conditions.
This system is sufficient to solve for the 6N unknown constants C; (i=1,...,6;
k = 1,...,N) (where an additional subscript k is introduced to identify the kth layer). Once
these constants are determined, the displacement and stress fields can be calculated by using
the appropriate relations given in this section. The determination of the 6N constants Cy
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involves the assembly and inversion of a 6N x 6N matrix. In Section 4, we shall give an
improved formulation which only involves the inversion of a series of 6 x 6 matrices.

3. THE EXACT SOLUTION

As we have remarked in the Introduction, the problem solved in the preceding section
by an asymptotic method has been solved before by Pagano (1970) for general orthotropic
materials, but his solution is not valid for transversely isotropic materials. In this section,
the appropriate formulae will be derived.

For easy reference, we shall prefix the equation numbers in Pagano’s (1970) paper by
a letter “P” wherever they are referred to hereafter. For transversely isotropic materials, it
can be shown that the constant J; defined by (P22c) vanishes and hence L, and R, appearing
in (P22a,b) are not properly defined. It can also be shown that the constant m, defined by

(P21) reduces to
€ss 2, 2
my = \[-p +q°, (41)
Caq

which is, surprisingly, identically equal to o, defined by (19) (which is obtained in the small
¢ limit). The eigenrelations [defined by (P9)] corresponding to m; can be shown to be given
by

U’=0, gV°—m,W°=0, (42)

where (U°, V°, W°) are defined by (P8) and appear in (P9). Since Pagano’s formulae require
U® to be non-zero, modifications have to be made. It can be shown that (P18) should now
be replaced by

3
UG = T 8,00, VO =S LUE, We) =3 RW,O, 43)
j=1 i=1

j=1

where the constants L;, R; (j = 1,2) are defined by (P22), the functions U and W, are given
by (P19) and

S1=S2=1, S330, L3=1, R3=”“‘“. (44)

Consequently, eqns (P19) and (P23a,b) remain unchanged, but (P23c,d) and (P24) should
be replaced by

3
T, = Css cos pxsin gy Y, (S;m;+pR)W;(2),
=1

3
T,y = Cg6 COS pX COS qy 3. (S;9+pL)U;(2),

J=1

Mij = —pC;S;—qCyL;+a;mR;Cy, GJj=12%3). (45)

These modified expressions together with those of Pagano’s (1970) original formulae which
remain unchanged constitute the exact solution to a single layer which is made of a
transversely isotropic material with its preferred direction aligned with the x-axis. To apply
the above formulae to general orthotropic materials, we simply let $; = 5, = §; = | (and .
we then recover Pagano’s original formulae).
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4. AN IMPROVED FORMULATION

Once the exact solution for each layer has been found, the usual approach for finding
the global solution would involve the assembly and inversion of a 6N x 6N matrix derived
from the boundary and interface conditions, as we have indicated at the end of Section 2.
Although the inversion of a large matrix can be done easily nowadays using high-speed
computers, the assembly of this large matrix remains a laborious task and is prone to errors.
In this section, we give an improved formulation which is based upon the propagator matrix
method (Gilbert and Backus, 1966). The latter method has been commonly used in solving
wave propagation problems, but does not seem to have been employed in the solution of
static problems. We shall only write down the formulation for the exact theory since the
improved formulation is at its best when the number of layers becomes large and for this
type of problem the asymptotic theory is not very suitable, as we will show in the following
sections.

We start our formulation by first noting that if we define two vectors « and B(z)
through

~ U(z) “~y

Fy V(2)
= G:‘ . W) S 46
x = F , B = . [’ (46)

g £,,(2)

G, N
. az(z) o’
where

., T %), Y a9 (47)

= - = — ¢, == -
cos px sin qy’ sinpxcosqy’ ° sinpxsingy’

and F;, G; (j=1,2,3) are the six constants appearing in (P18), then (43), (45a) and
(P23c,d) can be written as

B(z) = A(D)e, (48)

where the 6 x 6 components of A can be read off from the appropriate equations. Similarly,
if we define another vector y(z) by

2y
@) =446,¢ 49)
é,

where

£, = Tty 6. =% =B (50)
¥ cospxcosqy’ ¥ sinpxsingy’ 7 sinpxsingy’
then (P23a,b,f) can be written as

y(2) = B(2)a, (1))

where B is a 3 x 6 matrix and its 18 components can be read off from (P23a,b.f).
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Suppose now z, and z, are two arbitrary points in a layer. Equation (48) then gives
two relations at these two points. On eliminating « from these relations, we obtain

B(z,) = P(z2,2)B(z1), (52)
where P(z,,2,) = A(z,)A™'(z,). Eliminating « from (48) and (51) yields
7(z) = B(2)A™'(2)B(2). (53)

The matrix P, called the propagator matrix, has the following properties: for arbitrary
values of z in the layer, say z,, z, and z,

P(z;,2,) =P '(zy,2,) (54)
and
P(z3,2,) = P(z3,2,)P(z3,2/). (55)

Both these relations can be deduced from (52). From (54), P(z,, z,) is the identity matrix.
From (55) it can be shown that the linear relation between the vector g at any two points
in a given layer is independent of the origin of z and is, in fact, dependent only on the
distance between the two points. Thus

P(z2,2) = P(z,-2,,0). (56)

We now assume that the interfaces of the N layers are at z = z,,z,,...,zy_, (the
bottom and top surfaces are at z = 0, 4). With the repeated use of (52) and (56), we obtain

ﬁ(k)(z) = P(k)(Z, Ze- DBz 1)

=PO,z P V(a2 )Pk r) =
-1

=p<*>(z,zk-l>{ I Pff’(hj,(»}ﬁ(())» o7

j=k=1

where h; = z;,—z,_, is the thickness of the jth layer and the bracketed superscript denotes
the layer number (note that when evaluated at the interfaces, (z) does not need a bracketed
superscript since it is continuous across the interfaces). Equation (57) shows that when B(z)
is known at the bottom surface, its value at any other point in any layer is completely
determined. Let z = h, k = N. We obtain

Bk = {H P(f)(h,,O)}ﬂ(O), (58)

which relates the values of # at the top and bottom surfaces. The vectors $(0) and B(h)
have 12 components in total. For a given problem, six of these components will be given
as displacement or stress boundary conditions; the other six components can then be
determined from (58). As an illustrative example, we assume that on the bottom and top
surfaces, either the displacement or the surface tradition is given. If we define #,(z) and

B»(2) by

U T
B@=qV,, B(@2=<1%.p,
W g,

eqn (58) then yields

Bi(h) = Dlﬁl(0)+Dzﬂz(0)}, (59)

B2(h) = D3$,(0)+D.B,(0)
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where D, is the 3 x 3 matrix formed from the first three rows and columns of the 6 x6
coefficient matrix in (58) and D,, D,, D, are similarly formed. If, say, §,(0) and B,(h) are
given as boundary conditions (corresponding to the surface tractions known on the top
and bottom surfaces), the other two vectors $,(0) and B, (4) from (59b) are then given by

B.(0) = D3 '[B,(h) —D.p,(0)],

and (59a). Once B(0) = (B,(0), B,(0))" has been determined, the vector p(z) at any point
can then easily be calculated according to (57) and the vector y(z) can be calculated from
(53). In this manner the stress and displacement fields are determined throughout the plate
without the assembly or inversion of a 6N x 6 N matrix.

5. COMPARISON BETWEEN ASYMPTOTIC AND EXACT SOLUTIONS

In order to assess the accuracy of the asymptotic approach, we present in this section
some specific results. The composite used in the following calculations is a typical carbon
fibre—epoxy resin composite whose values of the elastic constants pr, i, 4, « and # have

been determined experimentally by Markham (1970) as follows [in units of 10° N m~2, see
also Spencer (1974)]:
=566, u =246, 1=564, a=—127, B=241.71 (60)
With the use of the relations (3), we obtain
E =23935, E =753 v=027, v, =053 61)

Correspondingly, we have ¢ = 0.023. When these values are used, eqn (19) yields
o, =1.817p, 6, =1.239p for ¢q/p = 1. The exact roots given by Pagano’s (1970) eqn (21)
are m; ,, = 6.481p, 1.248p, 1.817p. Thus apart from the fact that ¢, = m, holds exactly
{see the paragraph below eqn (41)], o, approximates m, with an error less than 7.5%.

We first consider a single-layer plate which is subject to the boundary conditions

T.=71,=0, 0,=Qsinpxsingy, at z=#h,

T, =1,=0,=0, at z=0, (62)

where p and g are the same as those defined by eqn (8) and Q is a constant. If we scale the
displacement and stress components by Q times the product of the appropriate sine and
cosine functions shown in (33)-(40) (e.g. u is scaled by Q cos px sin gy), then the scaled
displacement and stress fields only depend on the values of s and r [defined by eqn (12)
with /i replaced by A] in addition to z/A. In all of the figures shown, we have used the same
letters to denote the scaled quantities. We choose s = 4, r = 5 for the single-layer plate. In
Fig. 1, we have shown the variation of the scaled displacement field along the thickness.
There (and also in all other figures) the solid lines correspond to exact solutions and dashed
lines correspond to asymptotic results. We have multiplied the displacement along the fibre
direction by 10 to bring it to the same order of magnitude as the other two components.
The agreement is extremely good. We can see that the boundary layer structure is most
evident near the boundary z = 4 where the displacement gradient is large. This may be a
source of error for those approximation methods which assume linear or cubic variations
for the displacement field across the thickness. Although the latter assumptions can be good
approximations for isotropic or other materials which does not exhibit strong anisotropy,
they may fail for the type of transversely isotropic materials, considered in this paper, which
contains large displacement gradient boundary layers. In Figs 2(a,b) we have shown the
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Fig. 1. Variation of the scaled displacement field across the thickness for a single-layer plate with
s =4, r=35.Solid lines: exact solutions ; dashed lines : asymptotic results.
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the normal stress components a., 0,, 6., (b) for the shearing stresses ., 7., T4
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Fig. 3. Variation of the scaled displacement field across the thickness for a sandwich plate with

s = 3, r = 1. Solid lines : exact solutions ; dashed lines : asymptotic results. Interfaces are at z = /3,
2h/3.

variation of the scaled stress components across the thickness. The agreement is again very
good, especially for the normal stress components. Figures 1 and 2 have a common feature :
The asymptotic results for those displacement and stress components which involve the
fibre direction are not as good as the results for those which do not involve the fibre-
direction. For the former group (including u, o,, 1., 1,,), the asymptotic results seem to
deviate from the exact solution most at the top surface. This may be because the con-
tributions from higher order correction terms are most significant at z = h.

Next, we consider a sandwich plate under the same boundary conditions (62). The
three layers are assumed to have equal thickness and the total thickness of the plate is given
by k. The top and bottom layers have their fibers aligned with the x-axis, whilst the middle
layer has its fibres along the y-direction. We use the definition (12) with 4 replaced by 4/3
and use the same scalings for the stress and displacement components as above. We choose
s =3, r =1 in our calculations. In Figs 3-4, we have shown the variation of the scaled
displacement and stress components along the thickness. We see that the asymptotic results
have captured the overall behaviour of the two fields across the thickness and are especially
good for o,.

6. DISCUSSIONS

In the above section, we have compared the asymptotic results with the exact solutions
for a single-layer and a sandwich plate, using the experimentally measured values for the
various elastic constants. The agreement is extremely good, bearing in mind the fact that
the asymptotic method is only expected to be effective for very small values of ¢ while the
value of ¢ which we have used is 0.023. In order to see how the agreement could be improved
by assuming larger § values (or equivalently, larger E, values), we have shown in Figs 5(a,b)
the dependence on B of the scaled (o,,0,,7,,) and (¥,v,w) evaluated at the top surface
z = h. We have only chosen these quantities because other quantities are either zero (7.,
and 7,,) or prescribed (g,) when the single-layer plate is subject to the boundary conditions
(62). We see that the excellent agreement between the asymptotic and exact solutions for
g, v and w are almost independent of the values of f§ (note that these quantities do not
involve the fibre direction). For other quantities which involve the fibre direction, the
asymptotic results for ,, and u converge to the exact solutions rapidly as f is gradually
increased. The convergence for o, is not so good but we have to allow for the fact that the
top surface is where the asymptotic result for o, deviates from the exact solution most, as
can be seen from Fig. 2.
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Fig. 5. Showing the convergence of the asymptotic solution for a single-layer plate towards the

exact solution as § is gradually increased. Here s = 4, r = 5 and other elastic constants are fixed as

given by (60) with fibres aligned with the x-axis; (a) for the scaled stresses (o,, 0,,1,,) evaluated at
z = h, (b) for the scaled displacement (u x 10,2, w) evaluated at z = A.

We have also carried out calculations for two-layer and four-layer plates and by
varying the values of s and r (recalling that our asymptotic analysis is based upon the
assumption that both s and r are O (1) quantities compared with £). We find that in general,
for the elastic constants given by (60), the asymptotic results give very good results for
cases where s, the ratio of a/n to the thickness of each layer is not too large. This fact is
also borne out by the following considerations.

We observe that in obtaining the leading order solution (14) from (9), we have
implicitly assumed that both p;¢°U and u, U” are small when compared with p? (i.e. we
have assumed s and r to be of order one relative to 1/¢). Here U” is of order U/h? with A
denoting the thickness of the particular layer under consideration. Thus we expect that our
leading order asymptotic analysis will deviate from the exact solution when either ¢2/p? or
1/(p*h*) becomes comparable with B/u, . This is why the asymptotic analysis does not give
good results for “thin” plates or plates composed of many thin layers. For example, for
the two cases considered in the above section, the agreement with the exact solution becomes
even better for smaller s values and less good for larger s values.

SAS 30:23-F
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7. CONCLUSIONS

The stress analysis of laminated plates with simple support edge conditions is carried
out in this paper by using an asymptotic method. By comparing the asymptotic results with
the exact solutions, we showed that although the present asymptotic analysis may not be
suitable for analysing laminated plates with many thin layers, it is nonetheless a very
powerful tool for a single-layer thick plate or a thick laminated plate composed of only a
few layers and can give very accurate results even if /g, is only moderately large. Since
this type of thick plate problems is where the classical plate theories fail most [and as the
number of layers increases the classical plate theory gives better and better results (see
Pagano and Hatfield, 1972)], the present asymptotic analysis does have some applicability
and, where applicable, it provides a simple alternative to Pagano’s exact analysis.

Finally, we remark that the asymptotic approach used in this paper not only gives
simple asymptotic solutions, it also shows clearly the importance of those boundary layers
across which certain displacement and stress components vary rapidly and where difficulty
may arise in the application of finite element or finite difference methods.
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